Real time Reconstruction of Physiological Signal Morphologies

Gartheeban Ganeshapillai

Data Driven Medicine Group
CSAIL
Physiological Signals

- **Examples**
 - Electrocardiogram (ECG)
 - Arterial Blood Pressure (ABP)
 - Photoplethysmogram (PPG)
 - Intracranial Pressure (ICP)
 - Respiratory signal

- **Multiparameter Physiological Signal**
 - Multidimensional & Time aligned
 - Obtained from multiple sensor sources

- **Restrictions**
 - Quasiperiodic
 - Correlated
Morphology

- Quasiperiodic physiological signals have similar repeating morphologies.

- Algorithms use signal morphology to detect physiological events:
 - QRS detector: Heart Rate (HR) estimation [1]
 - Premature Ventricular Contraction (PVC) detector: Arrhythmia detection [2]
 - Morphological Variability (MV) estimator: cardiac death prediction [3]

Signal Corruption

- Sources of Corruption
 - No signal detected
 - Physical Activities
 - Muscle Artifacts (MA)
 - Electromagnetic Interference (EM)
 - Baseline Wander (BW)

- Corruption is often independent among signals
 - Limb movements need not affect all signals
 - Electromagnetic Interference doesn’t affect photoplethysmogram

- But signals are **correlated** and synchronized
 - they share the same source – heart
Motivation

- Example Applications
 - Arrhythmia detection
 - Use of ABP and PPG [1]
 - Suppress false alarms
 - Morphological Variability (MV)

- A uniform method to handle corruption in multi parameter signals

Goal

- **Context**
 - We have a multi parameter signal with corruption
 - m correlated signals
 - Any or all of them might be corrupted at any given time
 - Corruption can be severe – the signal could be completely absent

- **Goal**
 - Identify the corrupted regions
 - If at least one correlated signal is uncorrupted, reconstruct the corrupted regions in **real time**

- Formally posed for first time in Computers in Cardiology (CinC) 2010 Challenge
Overview

Segmentation

- Simultaneous segmentation and signal quality estimation
- Start by matching against pre-supplied template
- Evolve the template over time

Reconstruction

- Uses the output of step 1
- Assuming we have access to uncorrupted signals, build a database of templates from those signals
- On the remaining signal, reconstructs the corrupted regions using these templates
- Evolves the database of templates

Complementary to existing signal processing methods
- Median filter to remove baseline wander [1] & Wavelet denoising [2]

Road Map

- Reconstruction
 - Method
 - Experiments
- Segmentation
 - Method
 - Experiments
- Contributions
Part 1 - Reconstruction
Joint segmentation and signal quality estimation [1]

1. Identify the corrupted segment.
2. For each correlated signal in the corrupted segment:
 1. Construct Feature Vector
 2. Find the closest match from the database.
 3. Align the match to fit the interval.
3. Reconstruct the corrupted segment by fusing the matches.

Data fusion

- For each correlated signal that is free of corruption, we will have a reconstruction.

- Fuse the matches \((y_i; 2 \leq j \leq m)\) from \((m-1)\) correlated signals based on their quality, and build the reconstruction \((Y^\star)\):
 - \(q\) : signal quality
 - \(r\) : correlation between signals
 - \(c\) : cost of match

\[
Y^\star = \frac{\sum_{j=2}^{m} y_j^i \cdot w^j}{\sum_{j=2}^{m} w^j}
\]
\[
w^j = q^j \cdot r^j / c^j
\]
Features

Features serve two purposes [2]

• Speed up the lookups
• Provide a level of abstraction and context that preserves clinically relevant information in matching

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_1 \ldots f_4$</td>
<td>Pre, first-half, second-half, and post segment intervals</td>
</tr>
<tr>
<td>f_5</td>
<td>Square root of the total energy</td>
</tr>
<tr>
<td>$f_6 \ldots f_{15}$</td>
<td>The fraction of energy in the k^{th} section (a segment is divided into 10 sections)</td>
</tr>
<tr>
<td>f_{16}</td>
<td>Kurtosis of the sample values</td>
</tr>
<tr>
<td>f_{17}</td>
<td>DTW distance between the signal in the segment, and the median of the same signal</td>
</tr>
<tr>
<td>$f_{18} \ldots f_{27}$</td>
<td>DTW of k^{th} subsequence (DTW alignment is divided into 10 equal length sections)</td>
</tr>
<tr>
<td>f_{28}</td>
<td>Fraction of spectral energy in the QRS complex</td>
</tr>
<tr>
<td>f_{29}</td>
<td>Maximum sample value</td>
</tr>
<tr>
<td>f_{30}</td>
<td>Minimum sample value</td>
</tr>
</tbody>
</table>

Running Times

- Average segment length: \(l \)
- Signal length: \(n \)
- Number of segments: \(O(n) \)

- Segmentation: \(O(nl^2) \)
- Each reconstruction: \(O(l^2) \)
- Total processing time: \(O(nl^2) \)

- **Real time**

- On a standard PC, method implemented in Matlab, on average, **took 51 seconds** to process a **10 minute long record**
Experiments

On MIT-BIH Arrhythmia Database
On CinC Challenge 2010 Database
Data

- CinC 2010 Challenge Database [1]
 - Contains ECG, ABP, PPG, Respiratory signal, etc
 - 100 records, each 10 minutes long
 - Relatively clean and contain fewer abnormal events

- MIT-BIH Arrhythmia Database [2]
 - Contains 2-channel ECG signals
 - 48 records, each 30 mins long
 - Includes less common but clinically significant arrhythmias.

1 http://physionet.cps.unizar.es/challenge/2010/
2 http://www.physionet.org/physiobank/database/mitdb/
Evaluation Methodology

- Original signal (S)
- Synthetically corrupted signal (S#)
- Reconstructed signal (S*)

- Residual distance (r) : measures the similarity (for example, between S* and S)
 \[r = \sqrt{\frac{\sum_{k=1}^{n} (S^*[k] - S[k])^2}{n \times \delta_s^2}} \]

- Classification Accuracy (Δ) :
 - Measures the clinical usefulness of the method
 - By comparing the results of a widely used open source heart beat type classifier [1] on each signal (S, S#, and S*)
 \[\Delta = \frac{n_{\text{disagreement}}}{n_{\text{beats}}} \]

CinC 2010 Challenge

- For the first time posed the problem of reconstructing a corrupted multi parameter physiological signal [1]
 - Multi parameter signal – ECG, ABP and PPG.
 - 10 minutes long, last 30 seconds of one signal is removed, and asked to reconstruct
 - Evaluation: Residual distance & Correlation Coefficient

- Methods used in the challenge
 - Neural network (Highest scoring method) [2]
 - Kalman Filter and Adaptive Filters [3]
 - HMM, PCA, etc.

- Comparison
 - The highest scored method has normalized residual distance 0.17, compared to ours 0.02
 - Not fair, because their results include the tests on 30 additional records requiring reconstruction of respiratory signal and ICP (non-quasiperiodic)

Experiments on MIT-BIH Data

- Learn from first 80% of data.
- Corrupt last 20% of data, and try to reconstruct it.

E1. Effectiveness of Reconstruction
- Last 20% is corrupted with AWGN at 0 dB SNR.

E2. AWGN at Different Noise Levels
- Last 20% is corrupted with AWGN at different SNR levels

<table>
<thead>
<tr>
<th>SNR Level</th>
<th>R</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 dB</td>
<td>0.4</td>
<td>0.022</td>
</tr>
<tr>
<td>0 dB</td>
<td>0.4</td>
<td>0.021</td>
</tr>
<tr>
<td>10 dB</td>
<td>0.41</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Smaller is better
Experiments on MIT-BIH Data

- **E3. Different Noise Types at 10dB SNR**
 - Last 20% is corrupted with different kinds of structured interference at 10 dB SNR
 - Muscle Artifacts (MA)
 - Electromagnetic Interference (EM)
 - Performances of our method are compared.
Experiments of MIT-BIH Data (cont.)

- **E4 : Training Size**
 - The fraction of data used to train the framework is varied from 80% to 20%.
 - The rest is corrupted with AWGN at SNR 0dB.

- **E5 : Online Learning**
 - Only first 20% is used to train the framework.
 - Randomly chosen non-overlapping regions totaling 50% of the record is corrupted with AWGN at SNR 0dB.
 - On the rest (30%), if the framework identifies regions with high signal qualities, it can learn from.
Road Map

- Reconstruction
 - Method
 - Experiments

- Segmentation
 - Method
 - Experiments (optional)

- Contributions
Part 2 - Segmentation

Joint temporal segmentation and signal quality estimation
Joint Segmentation

- Most methods treat the signals separately, and compare the results [1]
 - Segment ECG, ABP and PPG
 - Compare one with another and confirm the correctness

Joint Segmentation

- Why?
 - Signals share the same source – Heart
 - Signals are correlated and synchronized

- How?
 - Simultaneously segment a multi parameter signal
 - Accommodate different kinds of signals

- By jointly segmenting a multi parameter signal we are able to segment the signals over regions when none of the signals can be segmented individually

- We use template matching for joint segmentation

Process ...

- We have a template – two segments long
- We extract a window from the signal
- Match the window with template using dynamic time warping
- Find the prefix of the window that minimizes the cost of matching
- Backtrack, and using the alignment find the point in window that corresponds to the end of the first segment in the template
- Update the template, and continue.
Illustration

Example on a single channel ECG
Illustration – Temporal Segmentation

- **Window**
- **Prefix of the Window**
- **Segment Boundary**
- **Match the end of the first segment**
- **Prefix of the window minimizing the matching distance**

Template

Window
DTW Trick (optional)

\[A = a_1 a_2 \ldots a_x \ldots a_n \]
\[B = b_1 b_2 \ldots b_y \ldots b_m \]
\[c_{x,y} = (a_x - b_y)^2 \]
\[D = \begin{bmatrix}
 c_{1,1} & c_{1,2} & \ldots & c_{1,m} \\
 c_{2,1} & c_{2,2} & \ldots & c_{2,m} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n,1} & \ldots & \ldots & c_{n,m}
\end{bmatrix} \]
\[aD(A_x, B_y) = D(A_x, B_y) + \min \{ D(A_{x-1}, B_{y-1}), D(A_x, B_{y-1}), D(A_{x-1}, B_y) \} \]
\[b^* = \arg \min_{k_2} \frac{1}{k_2} aD(k_2, m) \]

Prefix of the window minimizing the matching distance
Illustration – Template Update

after 12 mins

after 12 mins

after 12 mins
Extension to Multi Parameter Signals

Multi Parameter Signal

Multi Parameter Template
Weighted Time Warping

PPG: $pD_{PPG} \times q_1$

ABP: $pD_{ABP} \times q_2$

ECG: $pD_{ECG} \times q_3$
Weighted Time Warping

DTW

Single Parameter sequences A, B

\[A_n = a_1 a_2 ... a_n \]
\[B_m = b_1 b_2 ... b_m \]
\[c_{x,y} = |A_x - B_y|^2 \]
\[pD = \begin{bmatrix} c_{1,1} & c_{1,2} & \ldots & c_{1,m} \\ c_{2,1} & c_{2,2} & \ldots & c_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & \ldots & \ldots & c_{n,m} \end{bmatrix} \]
\[D = pD \]

WTW

Multiparameter Signals \(W \) (window), Template \(Z \)

\[W_{n \times k} = \{ W^1, W^2, .. W^k \} \]
\[Z_{m \times k} = \{ Z^1, Z^2, .. Z^k \} \]
\[c^j_{x,y} = |W^j_x - Z^j_y|^2 \]
\[pD^j = \begin{bmatrix} c^j_{1,1} & c^j_{1,2} & \ldots & c^j_{1,m} \\ c^j_{2,1} & c^j_{2,2} & \ldots & c^j_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ c^j_{n,1} & \ldots & \ldots & c^j_{n,m} \end{bmatrix} \]
\[D = \sqrt{\sum_{j=1}^{k} q_j pD^j} \]

Signal Quality Estimate
Signal Quality Estimation - Existing methods

- **ECG SQI [1]**
 - bSQI – two different algorithms on one channel
 - iSQI – the same algorithm on two different channels
 - kSQI – kurtosis to measure related peakedness
 - sSQI – Power spectral density to verify the QRS energy around 10 Hz

- **ABP SQI [1]**
 - ABP pulse detection to identify abnormalities

- **PPG SQI [2]**
 - By thresholding Hjorth[3] parameters
 - Hjorth parameters measure the activity (H_0), mobility (H_1), and complexity (H_2) of the signal

SQE - Requirements

- **Spatial Consistency**

 (a) Signals are corruption-free

 (b) ABP and PPG signals are added with 20dB AWGN

 (c) ABP and PPG signals are added with 10dB AWGN

- **Temporal Consistency**

 (a) AWGN added signal data

 (b) ECGSQI

 (c) SQI from morphological dissimilarity
Morphological Dissimilarity

- Warped distance between the template and the corresponding window
- Template update allows us to follow the gradual evolution of the signals
- LCSS [1] instead of DTW
- Advantages
 - Comparable across different signal types
 - Bounded

\[
LCSS(A_x', B_y') = \begin{cases}
0 & \text{if } A \text{ or } B \text{ is empty} \\
1 + LCSS(A'_{x-1}, B'_{y-1}) & \text{if } |A'_x - B'_y| < \delta_y \text{ and } |x - y| < \delta_x \\
\max\{LCSS(A'_{x-1}, B'_y), LCSS(A'_x, B'_{y-1})\} & \text{otherwise}
\end{cases}
\]

\[
q = \frac{LCSS(A, B)}{\min\{m, n\}}
\]

Experiments (optional)

On clean signals with transient corruption added
On clean signals altered with Additive White Gaussian Noise (AWGN)
MIMIC data set from Physionet.org [1]
✓ Collected from ICU patients
✓ A multi-parameter physiological signal database with ABP, ECG channels and PPG signals
✓ Sampled at 125 Hz
✓ Human labeled annotations available
✓ 70 records, each longer than an hour

Ex 1 : Baseline

- Compared with widely used QRS detector (uses only one ECG)
 - Pan and Tompkins (P&T) [1] : Shown to be resilient to noise artifacts [2]

- Results
 - Average errors (ms)
 - WTW : < 0.001 ms | P&T : < 0.001 ms
 - The median # errors of 56000 beats (12 hours) across 10 records
 - WTW : 65 (0.1%) | P&T : 330 (0.5%)

- Both methods perform well
 - Data is not hard!
 - Chosen because it was clean

1 Pan, J. and Tompkins, W. J. Biomedical Engineering, IEEE. 1985.
2 Kohler, B.-U., Hennig, C., and Orglmeister, R. The principles of software QRS detection. 2002.
EX 2: Tolerance to Transient Corruption

- **Data**
 - 1000 excerpts of 5-minute long clean signals from the raw MIMIC data
 - Severe transient corruption is randomly added to five 1-minute long non-overlapping regions
 - Signal interruption, exponential damping, superimposition of high and low frequency signals, overshooting and clipping

- **Mean errors in ms (mean segment length 521 ms)**
 - WTW (ours) : 2.89 ms | P&T (theirs) : 387.32 ms
Transient Corruption

PPG

ABP

ECG III
Ex 3 : Tolerance to AWGN

- **Data**
 - 1000 excerpts of 5-minute long clean signals from the raw MIMC data
 - Additive White Gaussian Noise (AWGN) is added to all \(m \) channels, or all but one randomly picked channel \((m-1)\)

- **Mean errors in ms (mean segment length 521 ms)**

<table>
<thead>
<tr>
<th>Signal to Noise Ratio (SNR Level)</th>
<th>P&T</th>
<th>WTW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All (m) channels</td>
</tr>
<tr>
<td>20 dB</td>
<td>12 ms</td>
<td>0.87 ms</td>
</tr>
<tr>
<td>10 dB</td>
<td>188 ms</td>
<td>3.27 ms</td>
</tr>
<tr>
<td>0 dB</td>
<td>303 ms</td>
<td>5.81 ms</td>
</tr>
</tbody>
</table>
AWGN at SNR 10dB

PPG

ABP

ECG III
Contributions

- Morphological Reconstruction
 - On non-overlapping corrupted quasiperiodic units
 - Formulate as a learning problem
 - Using template matching
 - Develop tools and optimizations to make template matching viable

- Segmentation
 - Joint Segmentation of multi parameter quasiperiodic signals
 - Weighted Time Warping (WTW)
 -Extension of DTW to multi parameter signals
 - Morphological Dissimilarity
 - Novel method for physiological signal quality estimate
Acknowledgements

Prof. Collin M Stultz, MD
Prof. Zeeshan Syed
Al Kharbouch
Data Driven Medicine Group, CSAIL, MIT
This work was supported by the funding from Quanta Computer Inc.
Backup Slides A

Dynamic Time Warping (DTW), characteristics, and Longest Common Subsequence (LCSS)
Dynamic Time Warping (DTW)

- Measure of similarity between two sequences varying in length
- The sequences are warped in time to find an optimal alignment [1]
- Achieved by minimizing the global distance between the sequences

Dynamic Programming Computation

$$A_n = a_1a_2...a_n$$
$$B_m = b_1b_2...b_m$$

$$aD(A_x, B_y) = D(A_x, B_y) + \min\{D(A_{x-1}, B_{y-1}), D(A_x, B_{y-1}), D(A_{x-1}, B_y)\}$$
Path Constraints

- DTW, in its basic form, is very flexible – can result in extreme matching

- Can be controlled by local and global path constraints [1]

\[
\begin{align*}
 d(x,y) &= c(x,y) + \min\{d(x-1,y-1), d(x,y-1), d(x-1,y)\} \\
 d(x,y) &= c(x,y) + \min\{d(x-1,y-1), d(x-1,y-2) + c(x,y-1), d(x-2,y-1) + c(x-1,y), d(x-1,y-3) + c(x,y-1) + c(x,y-2)\}
\end{align*}
\]

- Results is better – physiologically plausible matching

Longest Common Subsequence (LCSS)

- LCSS allows two sequences to be stretched for matching without rearranging the order of the elements by allowing some elements to be unmatched.

- LCSS is highly resilient to noise [1]
 - Lets us control the extent of warping by δ_x
 - It also allows us to decide the pair wise similarity between two elements in the sequences by δ_y

- LCSS measures similarity – not distance.

LCSS Vs. DTW

$$LCSS(A_x, B_y) = \begin{cases}
0 & \text{if A or B is empty} \\
1 + LCSS(A_{x-1}, B_{y-1}) & \text{if } |a_x - b_y| < \delta_y \text{ and} \\
\max\{LCSS(A_{x-1}, B_y), |x - y| < \delta_x \} & \text{otherwise}
\end{cases}$$

$$aD(A_x, B_y) = D(A_x, B_y) + \min\{D(A_{x-1}, B_{y-1}), D(A_x, B_{y-1}), D(A_{x-1}, B_y)\}$$